Unit Outline

STAT5001 Statistical Probability
Semester 1, 2016

Unit study package code: STAT5001
Mode of study: Internal
Tuition pattern summary: Note: For any specific variations to this tuition pattern and for precise information refer to the Learning Activities section.
Lecture: 1 x 2 Hours Weekly
Tutorial: 1 x 1 Hours Weekly
This unit does not have a fieldwork component.

Credit Value: 12.5
Pre-requisite units: Nil
Co-requisite units: Nil
Anti-requisite units: Nil
Result type: Grade/Mark
Approved incidental fees: Information about approved incidental fees can be obtained from our website. Visit fees.curtin.edu.au/incidental_fees.cfm for details.

Unit coordinator:

Title: Dr
Name: Roger Collinson
Phone: +618 9266 2127
Email: R.Collinson@curtin.edu.au
Location: Building: 314 - Room: 348

Teaching Staff:

Name: Roger Collinson
Phone: +618 9266 2127
Email: R.Collinson@curtin.edu.au
Location: Building: 314 - Room: 348

Administrative contact:

Name: Aimee Tournay
Phone: +61 8 9266 9595
Email: Aimee.Tournay@curtin.edu.au
Location: Building: 311 - Room: 144
Acknowledgement of Country

We respectfully acknowledge the Indigenous Elders, custodians, their descendants and kin of this land past and present.

Syllabus

Introduction

Statistical Probability will provide you with a solid foundation in Probability and Inferential Statistics. What makes this unit particularly useful is that it will help you solve problems in the presence of uncertainty. As the statistical methods are designed to deal with variability, they will also help you make inferences about underlying processes on the basis of often imperfect and incomplete information. More specifically, Statistical Probability will enable you to apply probabilistic statistical techniques to a variety of practical problems in your discipline area. You will also learn to apply appropriate statistical inference procedures, interpret the results and make appropriate conclusions.

Unit Learning Outcomes

All graduates of Curtin University achieve a set of nine graduate attributes during their course of study. These tell an employer that, through your studies, you have acquired discipline knowledge and a range of other skills and attributes which employers say would be useful in a professional setting. Each unit in your course addresses the graduate attributes through a clearly identified set of learning outcomes. They form a vital part in the process referred to as assurance of learning. The learning outcomes tell you what you are expected to know, understand or be able to do in order to be successful in this unit. Each assessment for this unit is carefully designed to test your achievement of one or more of the unit learning outcomes. On successfully completing all of the assessments you will have achieved all of these learning outcomes.

Your course has been designed so that on graduating we can say you will have achieved all of Curtin’s Graduate Attributes through the assurance of learning process in each unit.

<table>
<thead>
<tr>
<th>On successful completion of this unit students can:</th>
<th>Graduate Attributes addressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Apply probabilistic statistical techniques to a variety of practical problems</td>
<td>✔️</td>
</tr>
<tr>
<td>2 Evaluate probabilities, mean variances and other characteristics</td>
<td>✔️</td>
</tr>
<tr>
<td>3 Identify the role of probability models in formulating random phenomena in the real world</td>
<td>✔️</td>
</tr>
<tr>
<td>4 Apply the appropriate statistical inference and interpret the results</td>
<td>✔️</td>
</tr>
<tr>
<td>5 Select probability model</td>
<td>✔️</td>
</tr>
</tbody>
</table>
Curtin’s Graduate Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply discipline knowledge</td>
<td>Thinking skills (use analytical skills to solve problems)</td>
</tr>
<tr>
<td>Communication skills</td>
<td>Technology skills</td>
</tr>
<tr>
<td>International perspective</td>
<td>Cultural understanding (value the perspectives of others)</td>
</tr>
<tr>
<td></td>
<td>Information skills (confidence to investigate new ideas)</td>
</tr>
<tr>
<td></td>
<td>Learning how to learn (apply principles learnt to new situations)</td>
</tr>
<tr>
<td></td>
<td>(confidence to tackle unfamiliar problems)</td>
</tr>
<tr>
<td></td>
<td>Professional Skills (work independently and as a team)</td>
</tr>
<tr>
<td></td>
<td>(plan own work)</td>
</tr>
</tbody>
</table>

Find out more about Curtin’s Graduate attributes at the Office of Teaching & Learning website: ctl.curtin.edu.au

Learning Activities

1x2-hour lecture.

1x1-hour workshop.

Attendance at all lectures and workshops is strongly recommended. The week’s topic should be read (lecture notes / textbook) before attending each lecture. It is recommended that you take notes in the class.

The workshop exercises are designed to familiarise you with the essential concepts, calculations and interpretations relating to the various topics. The exercises on the workshop sheet should be attempted before each workshop. This will provide you with an opportunity to ask questions in the workshop.

Learning Resources

Essential texts

The required textbook(s) for this unit are:

Recommended texts

You do not have to purchase the following textbooks but you may like to refer to them.

Other resources

Short but comprehensive lecture notes will be available on blackboard.
Assessment

Assessment schedule

<table>
<thead>
<tr>
<th>Task</th>
<th>Value %</th>
<th>Date Due</th>
<th>Unit Learning Outcome(s) Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td>25 percent</td>
<td>Week: Week 10, Day: Monday, 2 May, Time: 10 am</td>
<td>1,2,3</td>
</tr>
<tr>
<td>Assignment</td>
<td>25 percent</td>
<td>Week: Week 11, Day: Friday, 13 May, Time: 5pm</td>
<td>2,3,4</td>
</tr>
<tr>
<td>Final Examination</td>
<td>50 percent</td>
<td>TBA</td>
<td>2,3,4</td>
</tr>
</tbody>
</table>

Detailed information on assessment tasks

1. A 70-minute test will be conducted during the first 70 minutes of lecture time in week 10 of the semester (refer to the Unit Study Calendar below).
2. The test will cover topics covered up to and including lecture 6.
3. A student who misses a test will be awarded 0 in that test and may end up with a “Fail” in the unit, unless the lecturer is notified within a day of the test of any acceptable circumstances, such as illness, due to which the student could not attend the test.
4. The following materials are allowed as aids during the tests:
 - Summary sheet for Statistical Probability (6 pages) – with handwritten notes on the first page only (available on Blackboard).
 - Any scientific calculator (e.g. HP10S).
 - Mathematical and Statistical tables book.
 - Past test papers with solutions are available on Blackboard.

2. The assignment will consist of two submission points. The first submission is intended to be formative, helping students to develop their skills through feedback and then acknowledging subsequent improvement or extension on their work. The final submission is summative and is meant to evaluate student learning.
 - The process will consist of three phases:
 1. First submission, worth 10%, due Friday 13 May;
 2. Feedback will then be given to students by Friday 20 May;
 3. Final submission, worth 15%, due Friday 27 May.

 All assignment submissions are to be uploaded to Turnitin (via Blackboard) by 5pm. Submitting a scanned copy of handwritten work to Turnitin is fine. I do not expect you to type your assignment. A hard copy of your assignment should also be placed in my Assignment box which is located opposite the Mathematics & Statistics office on level 3 of building 314 (it has my photo and name on it).

 Assignments should be neatly presented with all working shown. You should show reasoning and explanation.

3. A two hour final examination for the unit will be conducted during the university examination period.

 The following materials are allowed as aids during the examination:
 - To be supplied by University:
 - Statistical Tables and Formulae book
 - To be supplied by Student:
 - Summary sheet for SP (6 pages) – with handwritten notes on the first page only.
 - Any scientific calculator.

 Sample examination papers and their solutions will be available on Blackboard closer to the exam period.

Pass requirements

Students must achieve a Final Mark of 50 or greater to pass this unit.
Fair assessment through moderation

Moderation describes a quality assurance process to ensure that assessments are appropriate to the learning outcomes, and that student work is evaluated consistently by assessors. Minimum standards for the moderation of assessment are described in the Assessment and Student Progression Manual, available from policies.curtin.edu.au/policies/teachingandlearning.cfm

Late assessment policy

This ensures that the requirements for submission of assignments and other work to be assessed are fair, transparent, equitable, and that penalties are consistently applied.

1. All assessments students are required to submit will have a due date and time specified on this Unit Outline.
2. Students will be penalised by a deduction of ten percent per calendar day for a late assessment submission (eg a mark equivalent to 10% of the total allocated for the assessment will be deducted from the marked value for every day that the assessment is late). This means that an assessment worth 20 marks will have two marks deducted per calendar day late. Hence if it was handed in three calendar days late and given a mark of 16/20, the student would receive 10/20. An assessment more than seven calendar days overdue will not be marked and will receive a mark of 0.

Assessment extension

A student unable to complete an assessment task by/on the original published date/time (eg examinations, tests) or due date/time (eg assignments) must apply for an assessment extension using the Assessment Extension form (available from the Forms page at students.curtin.edu.au/administration/) as prescribed by the Academic Registrar. It is the responsibility of the student to demonstrate and provide evidence for exceptional circumstances beyond the student's control that prevent them from completing/submitting the assessment task.

The student will be expected to lodge the form and supporting documentation with the unit coordinator before the assessment date/time or due date/time. An application may be accepted up to five working days after the date or due date of the assessment task where the student is able to provide an acceptable explanation as to why he or she was not able to submit the application prior to the assessment date. An application for an assessment extension will not be accepted after the date of the Board of Examiners’ meeting.

Deferred assessments

If your results show that you have been granted a deferred assessment you should immediately check your OASIS email for details.

Deferred examinations/tests will be held from 18/07/2016 to 22/07/2016. Notification to students will be made after the Board of Examiners’ meeting via the Official Communications Channel (OCC) in OASIS.

Supplementary assessments

Supplementary assessments, if granted by the Board of Examiners, will have a due date or be held between 18/07/2016 and 22/07/2016. Notification to students will be made after the Board of Examiners’ meeting via the Official Communications Channel (OCC) in OASIS.

It is the responsibility of students to be available to complete the requirements of a supplementary assessment. If your results show that you have been granted a supplementary assessment you should immediately check your OASIS email for details.

Referencing style

The referencing style for this unit is Chicago.

More information can be found on this style from the Library web site: http://libguides.library.curtin.edu.au/referencing.
Copyright

© Curtin University. The course material for this unit is provided to you for your own research and study only. It is subject to copyright. It is a copyright infringement to make this material available on third party websites.

Academic Integrity (including plagiarism and cheating)

Any conduct by a student that is dishonest or unfair in connection with any academic work is considered to be academic misconduct. Plagiarism and cheating are serious offences that will be investigated and may result in penalties such as reduced or zero grades, annulled units or even termination from the course.

Plagiarism occurs when work or property of another person is presented as one’s own, without appropriate acknowledgement or referencing. Submitting work which has been produced by someone else (e.g. allowing or contracting another person to do the work for which you claim authorship) is also plagiarism. Submitted work is subjected to a plagiarism detection process, which may include the use of text matching systems or interviews with students to determine authorship.

Cheating includes (but is not limited to) asking or paying someone to complete an assessment task for you or any use of unauthorised materials or assistance during an examination or test.

From Semester 1, 2016, all incoming coursework students are required to complete Curtin’s Academic Integrity Program (AIP). If a student does not pass the program by the end of their first study period of enrolment at Curtin, their marks will be withheld until they pass. More information about the AIP can be found at: https://academicintegrity.curtin.edu.au/students/AIP.cfm

Refer to the Academic Integrity tab in Blackboard or academicintegrity.curtin.edu.au for more information, including student guidelines for avoiding plagiarism.

Information and Communications Technology (ICT) Expectations

Curtin students are expected to have reliable internet access in order to connect to OASIS email and learning systems such as Blackboard and Library Services.

You may also require a computer or mobile device for preparing and submitting your work.

For general ICT assistance, in the first instance please contact OASIS Student Support: oasisapps.curtin.edu.au/help/general/support.cfm

For specific assistance with any of the items listed below, please contact The Learning Centre: life.curtin.edu.au/learning-support/learning_centre.htm

- Using Blackboard, the I Drive and Back-Up files
- Introduction to PowerPoint, Word and Excel

Additional information

This unit assumes that the student has some basic knowledge of Calculus (integration and differentiation).

Enrolment

It is your responsibility to ensure that your enrolment is correct - you can check your enrolment through the eStudent option on OASIS, where you can also print an Enrolment Advice.
Student Rights and Responsibilities

It is the responsibility of every student to be aware of all relevant legislation, policies and procedures relating to their rights and responsibilities as a student. These include:

- the Student Charter
- the University’s Guiding Ethical Principles
- the University’s policy and statements on plagiarism and academic integrity
- copyright principles and responsibilities
- the University’s policies on appropriate use of software and computer facilities

Information on all these things is available through the University’s “Student Rights and Responsibilities” website at: students.curtin.edu.au/rights.

Student Equity

There are a number of factors that might disadvantage some students from participating in their studies or assessments to the best of their ability, under standard conditions. These factors may include a disability or medical condition (e.g. mental illness, chronic illness, physical or sensory disability, learning disability), significant family responsibilities, pregnancy, religious practices, living in a remote location or another reason. If you believe you may be unfairly disadvantaged on these or other grounds please contact Student Equity at eesi@curtin.edu.au or go to http://eesi.curtin.edu.au/student_equity/index.cfm for more information.

You can also contact Counselling and Disability services: http://www.disability.curtin.edu.au or the Multi-faith services: http://life.curtin.edu.au/health-and-wellbeing/about_multifaith_services.htm for further information.

It is important to note that the staff of the university may not be able to meet your needs if they are not informed of your individual circumstances so please get in touch with the appropriate service if you require assistance. For general wellbeing concerns or advice please contact Curtin's Student Wellbeing Advisory Service at: http://life.curtin.edu.au/health-and-wellbeing/student_wellbeing_service.htm

Recent unit changes

Students are encouraged to provide unit feedback through eVALUate, Curtin’s online student feedback system. For more information about eVALUate, please refer to evaluate.curtin.edu.au/info/.

To view previous student feedback about this unit, search for the Unit Summary Report at https://evaluate.curtin.edu.au/student/unit_search.cfm. See https://evaluate.curtin.edu.au/info/dates.cfm to find out when you can eVALUate this unit.

Recent changes to this unit include:

In response to student feedback through eValuate, the assessment structure has been modified to allow for more feedback on students’ work.
Program calendar

Semester 1 2016

<table>
<thead>
<tr>
<th>Week</th>
<th>Begin Date</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientation</td>
<td>22 February</td>
<td>Orientation Week</td>
</tr>
<tr>
<td>1.</td>
<td>29 February</td>
<td>Probability [Chapter 2]</td>
</tr>
<tr>
<td>2.</td>
<td>7 March</td>
<td>Discrete and Continuous Probability Distributions [Sections 3.1-3.3]</td>
</tr>
<tr>
<td>3.</td>
<td>14 March</td>
<td>Expectation and Variance of Random Variables [Sections 4.1-4.3]</td>
</tr>
<tr>
<td>4.</td>
<td>21 March</td>
<td>Discrete Random Variables: Special distributions, expected values [Chapter 5]</td>
</tr>
<tr>
<td>5.</td>
<td>28 March</td>
<td>Tuition Free Week</td>
</tr>
<tr>
<td>6.</td>
<td>4 April</td>
<td>Continuous Random Variables: Special distributions, expected values [Sections 6.1-6.8]</td>
</tr>
<tr>
<td>7.</td>
<td>11 April</td>
<td>Joint Probability Distributions [Sections 3.4, 4.1-4.3, 5.2, 8.4]</td>
</tr>
<tr>
<td>8.</td>
<td>18 April</td>
<td>Tuition Free Week</td>
</tr>
<tr>
<td>9.</td>
<td>25 April</td>
<td>ANZAC Day Public Holiday on 25 April – no lecture</td>
</tr>
<tr>
<td>10.</td>
<td>2 May</td>
<td>Test</td>
</tr>
<tr>
<td>11.</td>
<td>9 May</td>
<td>Functions of Random Variables [Chapter 7]</td>
</tr>
<tr>
<td>12.</td>
<td>16 May</td>
<td>Inference for proportions and Power of a test [Sections 9.10-9.11, 10.8, 10.9]</td>
</tr>
<tr>
<td>13.</td>
<td>23 May</td>
<td>Inference for one and two variances. Chi-squared and F-tests [Sections 8.5, 8.7, 9.12, 9.13, 10.10]</td>
</tr>
<tr>
<td>14.</td>
<td>30 May</td>
<td>Goodness of fit. Tests for independence and homogeneity [Sections 10.11-10.13]</td>
</tr>
<tr>
<td>15.</td>
<td>6 June</td>
<td>Study Week</td>
</tr>
<tr>
<td>16.</td>
<td>13 June</td>
<td>Examinations</td>
</tr>
</tbody>
</table>
17 | 20 June | Examinations